Random Stuff

Chapter 350 - Astronomical Waste: The Opportunity Cost Of Delayed Technological Development[1]

ABSTRACT. With very advanced technology, a very large population of people living happy lives could be sustained in the accessible region of the universe. For every year that development of such technologies and colonization of the universe is delayed, there is therefore an opportunity cost: a potential good, lives worth living, is not being realized. Given some plausible assumptions, this cost is extremely large. However, the lesson for utilitarians is not that we ought to maximize the pace of technological development, but rather that we ought to maximize its safety, i.e. the probability that colonization will eventually occur.

I. THE RATE OF LOSS OF POTENTIAL LIVES

As I write these words, suns are illuminating and heating empty rooms, unused energy is being flushed down black holes, and our great common endowment of negentropy is being irreversibly degraded into entropy on a cosmic scale. These are resources that an advanced civilization could have used to create value-structures, such as sentient beings living worthwhile lives.

The rate of this loss boggles the mind. One recent paper speculates, using loose theoretical considerations based on the rate of increase of entropy, that the loss of potential human lives in our own galactic supercl.u.s.ter is at least ~10^46 per century of delayed colonization. This estimate assumes that all the lost entropy could have been used for productive purposes, although no currently known technological mechanisms are even remotely capable of doing that. Since the estimate is meant to be a lower bound, this radically unconservative assumption is undesirable.

We can, however, get a lower bound more straightforwardly by simply counting the number or stars in our galactic supercl.u.s.ter and multiplying this number with the amount of computing power that the resources of each star could be used to generate using technologies for whose feasibility a strong case has already been made. We can then divide this total with the estimated amount of computing power needed to simulate one human life.

As a rough approximation, let us say the Virgo Supercl.u.s.ter contains 10^13 stars. One estimate of the computing power extractable from a star and with an associated planet-sized computational structure, using advanced molecular nanotechnology, is 10^42 operations per second. A typical estimate of the human brain's processing power is roughly 10^17 operations per second or less. Not much more seems to be needed to simulate the relevant parts of the environment in sufficient detail to enable the simulated minds to have experiences indistinguishable from typical current human experiences. Given these estimates, it follows that the potential for approximately 10^38 human lives is lost every century that colonization of our local supercl.u.s.ter is delayed; or equivalently, about 10^29 potential human lives per second.

While this estimate is conservative in that it assumes only computational mechanisms whose implementation has been at least outlined in the literature, it is useful to have an even more conservative estimate that does not assume a non-biological instantiation of the potential persons. Suppose that about 10^10 biological humans could be sustained around an average star. Then the Virgo Supercl.u.s.ter could contain 10^23 biological humans. This corresponds to a loss of potential equal to about 10^14 potential human lives per second of delayed colonization.

What matters for present purposes is not the exact numbers but the fact that they are huge. Even with the most conservative estimate, assuming a biological implementation of all persons, the potential for one hundred trillion potential human beings is lost for every second of postponement of colonization of our supercl.u.s.ter.

Tap the screen to use advanced tools Tip: You can use left and right keyboard keys to browse between chapters.

You'll Also Like